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Abstract
The results from this paper are twofold. First, we give a

purely syntactic presheaf model of CIC. Contrarily to

similar endeavours, this variant both preserves conver-

sion and interprets full dependent elimination.

Using a particular instance of this model, we show

how to extend CIC with Markov’s principle, while pre-

serving all good meta-theoretical properties like canon-

icity and decidability of type-checking. The resulting

construction can be seen as a synthetic presentation of

Coquand-Hofmann’s syntactic model of PRA𝜔 +MP as

the composition of Pédrot-Tabareau’s exceptional model

with our presheaf interpretation.
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1 Introduction
The category of presheaves over some base category is a

bread-and-butter model factory from topos theory. Well-

known in the proof theory community as forcing or

Kripke semantics, presheaves also provide models of de-

pendent type theory. Yet, as functors into Set, presheaves
form a semantic model, which has various drawbacks.

The first one is that they are not really computable, even

though the target set theory is constructive. Indeed, the

constructive existence of a natural number is always

up to some extensional equality, which prevents set-

theoretical proofs to be effectively run. The second one

is that it is hard to control the precise metatheory used

to prove the soundness of the model. What part of set
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theory is really needed for presheaves to model type

theory? Third, a more philosophical issue arises. How

can we claim that type theory can provide a sane alter-

native foundation to mathematics, like the HoTT clique

does [45], when it lays on the muddy grounds of set

theory?

In order to solve this conundrum, there have been sev-

eral attempts at giving a syntax-conscious presentation

of presheaves. One possible way is to describe an ex-

tension of usual type theory, justify its consistency into

a set-theoretical presheaf model, but show at the same

time good properties of the syntax, like strong normal-

ization. This lukewarm compromise position was held

for instance by cubical [13], guarded [11], parametric [9]

and modal [24] type theories.

The vanguard approach consists instead in replacing

set theory with type theory altogether in the presheaf

translation, building what is called a syntactic model [27].
While there exist indeed reasonable instances of syntac-

tic models [27, 40], presheaves have proven surprisingly

subtle to be typified, despite a handful of unsatisfactory

partial results [31, 32, 46]. The source of insatisfaction

itself is quite hard to pin down for non-experts in type

theory, and will be described in detail in Section 2.

In this paper, we give a strict positive answer to the

existence of type-theoretic presheaves given by a syn-

tactic translation described at Section 4. By construction,

this model ensures all the expected syntactic properties

of the corresponding theory such as decidability of type-

checking and canonicity. There are two critical ingre-

dients to this recipe. First, a deep understanding of the

constraints to respect, driven by an intuition from pro-

gramming language theory, and the half-successes from

the related work, which is also discussed in Section 2.

Second, a relatively minor extension of type theory that

introduces a tiny bit of extensionality without endan-

gering the meta-theoretical properties of the resulting

system, originally introduced in Gilbert et al. [23] and

that will be recalled in Section 3.

Because presheaves per se are not that interesting,

this paper culminates with an example of a mathemat-

ically useful extension of type theory. We show how

to extend type theory with Markov’s principle (MP), a
staple semi-classical principle from the Russian school

of constructivism, discussed in Section 8. This theory,
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once again, enjoys the usual meta-theoretical proper-

ties, and furthermore its soundness does not rely on the

availability of MP in the meta-theory. It is given not by

one, but two syntactic models. To be precise, it uses the

combination of the exceptional model [40], which we

will recall in Section 9 and use in Section 10, with an in-

stance of the presheaf model introduced before, that we

describe in Section 11. From an abstract standpoint, it is

both a synthetic presentation and a dependently-typed

generalization of the PRA𝜔 +MP model from Coquand-

Hofmann [15]. As far as we know, this is a new result.

2 What is to be Done?
In this section, we review the previous attempts at a

internal presentation of presheaves in type theory, and

explain why they are subtly broken and how to fix them.

Jaber et al. gave a straightforward type-theoretic adap-

tation of presheaves [32], by merely translating all the

set-theoretic constructs. Unfortunately, they realized

that for thismodel to be sound, they neededwhat amoun-

ted to an extensional target theory. In particular, they

interpreted conversion in the presheaf model by propo-

sitional equality in the target, relying on axioms such

as function extensionality and UIP. In practice, it means

that the computational content of the model is destroyed

in the process, as well as decidability. Performing a 𝛽-

reduction in a term becomes a non-local transformation

that requires an explicit proof. To add insult to injury,

this also makes canonicity pointless, as it is not possible

to actually evaluate a term, as the axioms get in the way.

In an unpublished document, Xu follows the same

path [46], and gives a precise analysis of the extensional

principles needed for each feature of this model.

Lemma 1. In a type-theoretic presheaf model:

• Π-types require funext in the target.
• Universes require UIP in the target.

Thus, to preserve definitional equality, these princi-

ples better be computational in the target, otherwise

the explicit rewriting nightmare described above ap-

pears again. Function extensionality holds in OTT [5]

and CubicalTT [13], but only the former interprets UIP.
Alas, those theories require deep changes w.r.t. CIC,
which limit the applicability of any presheaf model that

would target them, if ever this were possible.

A few years later, Jaber et al. [31] went on a radi-

cally different approach to the problem. By studying

presheaves as an effect-inducing model, they showed

that the usual presentation was squaring the circle. Na-

mely, it was a naturally call-by-value interpretation,

which required post-hoc equational properties to en-

sure full 𝛽-reduction, which in turn were the worm in

the apple relying on extensionality. By taking the alter-

native call-by-name decomposition, all usual equations

would become definitional. The key ingredient of this

property was that all monotonocity properties were freely
given. That is, all terms would start with a universal

quantification over the set of smaller conditions.

Quite regrettably, the resulting model was broken,

again. By excessively favouring the negative fragment,

their translation was too naïve, resulting in a breakage

of the positive side, i.e. dependent elimination.

As they realized later [41], this was an instance of

a much more general phenomenon. The call-by-name

forcing translation was introducing effects, which al-

lowed non-standard inhabitants of inductive types con-

tradicting their induction principle. Dually, the categori-

cal presheaf model recovered a call-by-name equational

theory thanks to the naturality property, corresponding

exactly to Fürmann’s notion of purity called thunkabil-
ity [21]. In call-by-name, this corresponds to eliminating

troublemakers with parametricity, a technique better

known as realizability.
Hence, it was deemed possible to build a parametric

variant of the call-by-name presheaf construction, which

would enjoy both definitional equations and dependent

elimination, following Boulier’s generous variant [12]

of Bernardy-Lasson parametricity [10]. Namely, every

variable in the source should be mapped to two variables

in the target, the first for the effectful term, and the

second for the proof that is was pure, e.g. for booleans

(𝑥 : B) ↦→ (𝑥0 : Π𝑞 (𝛼 : 𝑞 ≤ 𝑝).B), (𝑥Y : BY 𝑝 𝑥0)

with BY an inductive predicate ensuring that its argu-

ment is either constantly true or constantly false. This

definitely enforces dependent elimination by construc-

tion, butwe are now back to square onew.r.t. monotonoc-

ity. Indeed, one needs to lift the parametricity proof to

any lower condition, and this needs to be done defini-

tionally or else we have to reintroduce extensionality.

Fair enough, we can apply the same free construction

to the parametricity component, which results in

(𝑥0 : Π𝑞 (𝛼 : 𝑞 ≤ 𝑝).B),
(𝑥Y : Π𝑞 (𝛼 : 𝑞 ≤ 𝑝).BY 𝑞 (𝛼 ◦ 𝑥0))

where 𝛼 ◦ (−) stands for precomposition by 𝛼 . We re-

cover definitional equations, and by specializing 𝑥Y to

𝑝 and the identity, one can ensure that indeed 𝑥0 is in-

ternally a boolean... except that this does not suffice to
prove dependent elimination! All functions depend both

on the effectful term and on the parametricity proof,

which means that not only 𝑥0 should be a boolean but
also 𝑥Y . Yet, there is no 2-parametricity proof at hand

to enforce this on 𝑥Y , which would require adding one

more parametricity layer. But adding 2-parametricity
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would just lift the problem one level higher, and so on,

leading to the infamous coherence hell.

3 Strict Propositions
There are two opposite, canonical ways out of the co-

herence hell, the libertarian one and the authoritarian

one. HoTT champions the libertarian approach, which

consists in freely adding higher equalities, which are

made available via the univalence principle and higher

inductive types. The authoritarian tenet, contrastingly,

is that there is only one way to be equal, a doctrine em-

bodied by UIP, the principle of uniqueness of identity
proofs. The resulting equality type, as found in OTT, is
known as a strict equality.
While the HoTT stance seems a priori more attrac-

tive, we argue that this is currently not a tenable ideo-

logical position. There has been ongoing and very re-

cent work [16, 28] to show that cubical type theory

enjoyed the desirable syntactic properties of strong nor-

malization and canonicity. For now, these results are

still rudimentary, as they only consider a small subset of

type theory. Worse, all their proofs rely on set-theoretic

presheaves, and thus fundamentally take place in the

contempted anti-univalent set theory.

This is an aporia. Rather, we advocate for a two-stage

cubical revolution. By first implementing presheaves

in a minimalistically authoritarian type theory, we will

be able to unroot the cubical model from set theory,

eventually leading to a setless cubical theory.

We will implement parametric presheaves in 𝔰CIC, a
HoTT-inspired extension ofCICwith strict propositions

and UIP, described in Section 4.4 of Gilbert et al. [23].

We now briefly recall what the extension looks like.

The basic 𝔰CIC theory extends CIC with a hierarchy

of sorts
1 ∗𝑖 : □𝑖+1 s.t. for any type 𝐴 : ∗𝑖 , if 𝑀, 𝑁 :

𝐴 then 𝑀 ≡ 𝑁 . Such types are called definitionally

proof-irrelevant. Furthermore, this sort is closed un-

der irrelevant-codomain products, i.e. if 𝐴 : □𝑖 and

𝐵 : 𝐴 → ∗𝑗 then (Π𝑥 : 𝐴. 𝐵 𝑥) : ∗max(𝑖, 𝑗) , and it also

contains inductive types defined similarly to their rel-

evant counterparts. The tricky problem to figure out

is the legality of elimination of those ∗-dwelling induc-

tive types into □. It turns out that the criterion is a

restriction of the singleton elimination that applies to

Coq’s Prop. Namely, while the latter only authorizes

elimination from inductive types with at most one con-

structor with only Prop-living arguments, the former

further mandates that the type is not recursive, and,

depending on the legality of UIP, that it only has proof-

irrelevant indices. Recursivity is forbidden because it

1
As in the Agda implementation, but Coq features a single impred-

icative sort instead. We will not rely on impredicativity here.

entails non-decidability of type-checking, while allow-

ing proof-relevant indices implies UIP.
We will embrace the single-equality doctrine, and

thus allow elimination over proof-relevant indices of

strict propositions. In this paper, we will write 𝔰CIC for

this theory, implicitly assuming that it validates UIP.
The major change introduced by this extension is not

about conversion, but reduction. Because any two proofs

of eq 𝐴 𝑀 𝑁 are convertible, this also means that any

proof of eq 𝐴 𝑀 𝑀 is convertible to refl 𝐴 𝑀 , as their

types coincide. Thus, to ensure canonicity, reduction

must also be extended for the □-valued operator

J : Π(𝐴 : □) (𝑥 : 𝐴) (𝑃 : Π𝑦 : 𝐴. eq 𝐴 𝑥 𝑦 → □).
𝑃 𝑥 (refl 𝐴 𝑥) → Π(𝑦 : 𝐴) (𝑒 : eq 𝐴 𝑥 𝑦). 𝑃 𝑦 𝑒

with J 𝐴 𝑀 𝑃 𝑄 𝑁 𝐸 → 𝑄 whenever 𝑀 ≡ 𝑁 . Notably,

this makes reduction dependent on conversion.

We insist that 𝔰CIC is weaker thatOTT, for it features
neither function extensionality nor quotients. A repre-

sentative subset of the UIP-free fragment has been for-

mally showed to enjoy strong normalization and canon-

icity [22]. There is no such proof for the full 𝔰CIC exten-

sion, and worse, 𝔰CIC with an impredicative universe

has been shown to break strong normalization while

seemingly retaining canonicity [2]. We do not rely on

impredicativity, thus we speculate that 𝔰CIC is indeed

strongly normalizing.

4 Negative Forcing Translation
In this section, we will define the prefascist2 model for

CC𝜔 , the negative fragment of type theory [31]. It fol-

lows the abstract scheme described in Section 2, i.e. it

is intuitively the generously parametric restriction of

the call-by-name presheaf model from Jaber et al. [31],

where crucially, the parametricity predicate is a strict
proposition. As such, we will use 𝔰CIC as the target the-

ory of this syntactic interpretation. We will assume [-

rules for functions and negative products, and we will

write the strict equality in ∗𝑖 as 𝑀 = 𝑁 , omitting the

type argument and the universe level. We highlight the

differences with the effectful model when they appear.

Definition 1. A base category is given by

• objects P : □0

• morphisms hom : P→ P→ □0

• identity id𝑝 : hom 𝑝 𝑝

• composition ⊛𝑝,𝑞,𝑟 : hom 𝑝 𝑞 → hom 𝑞 𝑟 → hom 𝑝 𝑟

whose inferable arguments will be omitted and that will

follow the usual infix notations for readability, further-

more subject to the following definitional equalities.

2
Sheaves were first introduced in French as faisceaux. Owing to this

Romance etymology, and noting the lack of a corresponding formal

Germanic counterpart, we are forced to conclude that the adjectiviza-

tion of sheaf is fascist, fitting their authoritarian meta-theory.
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[□𝑖 ]Γ𝑝 := Psh (_(𝑞 𝛼 : 𝑝).□□𝑖
𝑞)

(_(𝐴 : Π(𝑞 𝛼 : 𝑝) .□□𝑖
𝑞).Π(𝑞 𝛼 : 𝑝) . ((𝐴 𝑞 𝛼).T 𝑞 id𝑞) = ((𝐴 𝑝 id𝑝 ).T 𝑞 𝛼))

[Π𝑥 : 𝐴. 𝐵]Γ𝑝 := Psh (_(𝑞 𝛼 : 𝑝).Π(𝑥0 : 𝛼 •Γ [[𝐴]]Γ𝑞 ) (𝑥Y : (𝛼 •Γ {{𝐴}}Γ𝑞 ) 𝑥0) . (𝛼 •Γ [𝐵]Γ,𝑥𝑞 ) .T 𝑞 id𝑞)
(_(𝑓 : Π(𝑞 𝛼 : 𝑝) (𝑥0 : 𝛼 •Γ [[𝐴]]Γ𝑞 ) (𝑥Y : (𝛼 •Γ {{𝐴}}Γ𝑞 ) 𝑥0). (𝛼 •Γ [𝐵]Γ,𝑥𝑞 ).T 𝑞 id𝑞) .

Π(𝑥0 : [[𝐴]]Γ𝑝 ) (𝑥Y : {{𝐴}}Γ𝑝 𝑥0) . [𝐵]Γ,𝑥𝑝 .R (_(𝑞 𝛼 : 𝑝) . rw ({𝐵}Γ,𝑥𝑝 𝑞 𝛼) (𝑓 𝑞 𝛼 (𝛼 ◦𝑥0) (𝛼 ◦𝑥Y ))))
[𝑥]Γ𝑝 := 𝑥0 𝑝 id𝑝

[_𝑥 : 𝐴.𝑀]Γ𝑝 := _(𝑥0 : [[𝐴]]Γ𝑝 ) (𝑥Y : {{𝐴}}Γ𝑝 𝑥0) . [𝑀]Γ,𝑥𝑝

[𝑀 𝑁 ]Γ𝑝 := [𝑀]Γ𝑝 (_(𝑞 𝛼 : 𝑝). 𝛼 •Γ [𝑁 ]Γ𝑞 ) (_(𝑞 𝛼 : 𝑝). 𝛼 •Γ {𝑁 }Γ𝑞 )

{□𝑖 }Γ𝑝 := _(𝑞 𝛼 : 𝑝). refl

{Π𝑥 : 𝐴. 𝐵}Γ𝑝 := _(𝑞 𝛼 : 𝑝). refl

{𝑥}Γ𝑝 := 𝑥Y 𝑝 id𝑝

{_𝑥 : 𝐴.𝑀}Γ𝑝 := _(𝑥0 : [[𝐴]]Γ𝑝 ) (𝑥Y : {{𝐴}}Γ𝑝 𝑥0) . {𝑀}Γ,𝑥𝑝

{𝑀 𝑁 }Γ𝑝 := {𝑀}Γ𝑝 (_(𝑞 𝛼 : 𝑝) . 𝛼 •Γ [𝑁 ]Γ𝑞 ) (_(𝑞 𝛼 : 𝑝) . 𝛼 •Γ {𝑁 }Γ𝑞 )

[[𝐴]]Γ𝑝 := Π(𝑞 𝛼 : 𝑝) . (𝛼 •Γ [𝐴]Γ𝑞 ) .T 𝑞 id𝑞

{{𝐴}}Γ𝑝 𝑥0 := Π(𝑞 𝛼 : 𝑝) . (𝛼 •Γ [𝐴]Γ𝑞 ) .R (_(𝑟 𝛽 : 𝑞) . rw ((𝛼 •Γ {𝐴}Γ𝑞 ) 𝑟 𝛽) (𝑥0 𝑟 (𝛼 ⊛ 𝛽)))

[[·]]𝑝 := 𝑝 : P

[[Γ, 𝑥 : 𝐴]]𝑝 := [[Γ]]𝑝 , 𝑥0 : [[𝐴]]Γ𝑝 , 𝑥Y : {{𝐴}}Γ𝑝 𝑥0

Figure 1. Prefascist Translation

id⊛ 𝛼 ≡ 𝛼 𝛼 ⊛ id ≡ 𝛼

(𝛼 ⊛ 𝛽) ⊛ 𝛾 ≡ 𝛼 ⊛ (𝛽 ⊛ 𝛾)
By convention, variables 𝑝, 𝑞, 𝑟 range over objects, and

𝛼, 𝛽,𝛾 over morphisms. We use the binding notation

(𝑞 𝛼 : 𝑝) for (𝑞 : P) (𝛼 : hom 𝑞 𝑝). Given a term 𝑀 :

Π(𝑞 𝛼 : 𝑝). 𝐴{𝑞, 𝛼}, and a morphism 𝛼 : hom 𝑞 𝑝 , we

write 𝛼 ◦𝑀 for the precomposition of𝑀 with 𝛼 , i.e.

𝛼 ◦𝑀 := _(𝑟 𝛽 : 𝑞). 𝑀 𝑟 (𝛼 ⊛ 𝛽).

Remark 1. As explained in Jaber et al. [31], the defi-

nitional equations on composition are not restrictive,

even less so with a strict equality. Indeed, the Yoneda

embedding

Yhom 𝑝 𝑞 := Σ𝛼 : (Π𝑟 : P. hom 𝑞 𝑟 → hom 𝑝 𝑟 ).
∃𝛼0 : hom 𝑝 𝑞. (𝛼 = _𝑟 𝑘. 𝛼0 ⊛ 𝑘)

where ∃ lives in ∗, is internally isomorphic to hom in

𝔰CIC, and can be equipped with a definitional composi-

tion by precomposition.

Definition 2. Let 𝑝 : P and 𝑖 a universe level, we define
□□𝑖

𝑝 the type of pre-presheaves at 𝑝 as the negative record

□□𝑖
𝑝 := Psh

{
T : Π(𝑞 𝛼 : 𝑝).□𝑖

R : (Π(𝑞 𝛼 : 𝑝). T 𝑞 𝛼) → ∗𝑖

}
The first field is exactly the universe interpretation

from Jaber et al. [31]. The main addition is the second

field, which is a strict parametricity predicate.

As in the parametricity interpretation [10], the trans-

lation will duplicate every context variable 𝑥 into a base

variable 𝑥0 and a parametricity variable 𝑥Y , except that

it does so both for base and parametricity terms as in

Boulier’s generous variant [12]. Critically, the sort of the

type of a variable 𝑥Y will always be ∗. This introduces
a minor difference with usual parametricity, where the

parametricity predicate of a type is literally the para-

metricity translation of that type. Since here the para-

metricity translation is always a proposition, we have to

bundle the predicate with the type itself in the□□ record.

Wewill track the set of free variables in the translation

to be able to maintain them at the right level. Given a

set of variables Γ, a morphism 𝛼 : hom 𝑞 𝑝 and a term𝑀

we define 𝛼 •Γ 𝑀 the lift of𝑀 along Γ as

𝛼 •Γ 𝑀 := 𝑀{𝑥0 := 𝛼 ◦𝑥0, 𝑥Y := 𝛼 ◦𝑥Y | 𝑥 ∈ Γ}.

Lemma 2. We have the immediate definitional equalities
id ◦𝑀 ≡ 𝑀 (𝛼 ⊛ 𝛽) ◦𝑀 ≡ 𝛽 ◦ (𝛼 ◦𝑀)
id •Γ 𝑀 ≡ 𝑀 (𝛼 ⊛ 𝛽) •Γ 𝑀 ≡ 𝛽 •Γ (𝛼 •Γ 𝑀)

We will call rw : Π(𝐴𝐵 : □). 𝐴 = 𝐵 → 𝐴 → 𝐵 the

transport function, and leave its type arguments im-

plicit.

The prefascist translation of CC𝜔 is defined at Fig-

ure 1. It is quite a mouthful, so we first state the sound-

ness theorem, whose proof is just a variant of Jaber et al.

[31], and then we walk through the translation.
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Theorem 1. If Γ ⊢CC𝜔
𝑀 : 𝐴 then

• [[Γ]]𝑝 ⊢ [𝑀]Γ𝑝 : [𝐴]Γ𝑝 .T 𝑝 id𝑝

• [[Γ]]𝑝 ⊢ {𝑀}Γ𝑝 :

[𝐴]Γ𝑝 .R (_(𝑞 𝛼 : 𝑝). rw ({𝐴}Γ𝑝 𝑞 𝛼) (𝛼 •Γ [𝑀]Γ𝑞))

Likewise, if 𝑀 ≡CC𝜔
𝑁 then [𝑀]Γ𝑝 ≡𝔰CIC [𝑁 ]Γ𝑝 and

{𝑀}Γ𝑝 ≡𝔰CIC {𝑁 }Γ𝑝 .

Remark 2. In particular, if Γ ⊢CC𝜔
𝐴 : □𝑖 ,

• [[Γ]]𝑝 ⊢ [𝐴]Γ𝑝 : □□𝑖
𝑝

• [[Γ]]𝑝 ⊢ {𝐴}Γ𝑝 : Π(𝑞 𝛼 : 𝑝).
(𝛼 •Γ [𝐴]Γ𝑞).T 𝑞 id𝑞 = [𝐴]Γ𝑝 .T 𝑞 𝛼

First, observe that all variables have a thunked type,

i.e. are quantified over some (𝑞 𝛼 : 𝑝). Therefore, we get
definitional monotonocity for free.

Lemma 3 (Free Monotonocity). Assume that we have
[[Γ]]𝑝 ⊢ 𝑀0 : [[𝐴]]Γ𝑝 and [[Γ]]𝑝 ⊢ 𝑀Y : {{𝐴}}Γ𝑝 𝑀0. Then we
also have for any 𝛼 : hom 𝑞 𝑝 :

• [[Γ]]𝑝 ⊢ 𝛼 ◦𝑀0 : 𝛼 •Γ [[𝐴]]Γ𝑞
• [[Γ]]𝑝 ⊢ 𝛼 ◦𝑀Y : (𝛼 •Γ {{𝐴}}Γ𝑞) (𝛼 ◦𝑀0).

The [−]Γ𝑝 part corresponds to the model from Jaber

et al. [31] except that types are enriched with a cor-

rectness predicate, and that all arguments come with

an additional correctness proof. We also use an explicit

lift 𝛼 •Γ (−) every time we thunk w.r.t. 𝛼 in the style

of Miquel [39] instead of accumulating constraints as

in Jaber et al. [31], but this is merely cosmetic.

The new part is the {−}Γ𝑝 translation, which corre-

sponds to the parametricity proof. There are several

points to highlight. First, as already explained, this trans-

lation always lives in a proof-irrelevant sort. Second,

applying the parametricity predicate of a type 𝐴 on

some thunk 𝑥0 requires a type cast, as exemplified in

the type soundness for {𝑀}Γ𝑝 . There, 𝛼 •Γ [𝑀]Γ𝑞 has type

(𝛼 •Γ [𝐴]Γ𝑞).T 𝑞 id𝑞 , but [𝐴]Γ𝑝 .R expects a thunk of type

Π(𝑞 𝛼 : 𝑝). [𝐴]Γ𝑝 .T 𝑞 𝛼 . Luckily, the parametricity proof

{𝐴}Γ𝑝 precisely allows to cast from one type to the other.

The bit ofmagic thatmakes this work is that this equality

is convertible to the universe predicate as in Remark 2.

We do not detail the proof of Theorem 1, it is a simple

mutual induction over derivations. A direct consequence

though is the following theorem.

Theorem2. The prefascist translation is amodel ofCC𝜔 .

The soundness theorem for the negative fragment

does not rely on proof-irrelevance. In particular, replac-

ing ∗𝑖 with □𝑖 in the definition of □□𝑖
would not have

any effect yet.

5 Positive Types
So far, the additional parametricity layer has been but a

burden, we did not use it actively. Its only interest is to

recover dependent elimination that was lost in the naive

presheaf model. We therefore show how by translating

inductive types in this section.

Once again the translation is very similar to Jaber

et al. [31], up to the fact that we now translate a type

I into a base type I0 and a strict predicate IR over that
type. As in the negative case, the universe parametric-

ity equation will hold definitionally. The translation is

straightforward.

Definition 3. Given an inductive type I with parame-

ters ΓI , indicesΔI and constructors 𝑐𝑖 , we defineI0 with
non-uniform parameters [[ΓI]]𝑝 , indices [[ΔI]]𝑝 without
the leading 𝑝 , and constructors 𝑐0𝑖 whose types are the

pointwise [[−]]ΓI𝑝 translation, with [I]Ξ𝑞 .T 𝑟 𝛽 replaced

byI0 𝑟 and quantifications over [I]Ξ𝑞 .R erased, for anyΞ,
𝑞, 𝑟 and 𝛽 . We define the IR the same, except that is has

one more index 𝑥0 : I0 ΓI ΔI , that it lands in ∗ and that

its constructors 𝑐R𝑖 have type {{−}}ΓI𝑝 applied to the cor-

responding thunked I0 constructor, with replacement

for both translations of the underlying inductive.

The usual strict positivity condition ensures that the

replacements of the self inductive is sound
3
. We give

somewhat clearer representative examples of the trans-

lation in Figure 2, for booleans, lists and equality. Note

e.g. how cons0 does not mention the parametricity pred-

icate on its recursive call, but consR does. We extend the

translation in Figure 3 using a bit of syntactic sugar for

context handling.

It is possible to write recursors for any inductive type,

satisfying the expected definitional equations. Nonethe-

less, the resulting terms are quite hideous and unread-

able. Hence, we explain instead at a high level how strict

parametricity saves the day on the particular example

of booleans. Barring conversion, it suffices to prove that

𝑃 : Π(𝑥0 : [[B]]𝑝 ) (𝑥Y : {{B}}𝑝 𝑥0) .□
𝑝t : 𝑃 (_(𝑞 𝛼 : 𝑝). true0 𝑞) (_(𝑞 𝛼 : 𝑝) . trueR 𝑞)
𝑝f : 𝑃 (_(𝑞 𝛼 : 𝑝). false0 𝑞) (_(𝑞 𝛼 : 𝑝). falseR 𝑞)
𝑥0 : Π(𝑞 𝛼 : 𝑝) .B0 𝑞
𝑥Y : Π(𝑞 𝛼 : 𝑝) .BR 𝑞 (𝛼 ◦𝑥0)

implies 𝑃 𝑥0 𝑥Y . The trick is the following: 𝑥Y 𝑝 id𝑝 will

provide an irrelevant proof that 𝑥0 is indeed a boolean.

From this, we get a propositional equality between 𝑥0
and its [-expansion:

if 𝑥0 𝑝 id𝑝 then (_𝑞 𝛼. true0 𝑞) else (_𝑞 𝛼. false0 𝑞)
which we use to rewrite in 𝑃 𝑥0 𝑥Y . This step is a critical

use of UIP. By dependent elimination over 𝑥0 𝑝 id𝑝 , we
are almost done. Thanks to the irrelevance of BR, any

3
Nested inductive types would require induction-induction though.
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Ind B0 (𝑝 : P) : □ :=

| true0 : B0 𝑝
| false0 : B0 𝑝
Ind list0 (𝑝 : P) (𝐴0 : [[□]]𝑝 ) (𝐴Y : {{□}}𝑝 𝐴0) : □ :=

| nil0 : list0 𝑝 𝐴0 𝐴Y

| cons0 : Π(𝑥0 : [[𝐴]]𝑝 ) (𝑥Y : {{𝐴}}𝑝 𝑥0). (Π(𝑞 𝛼 : 𝑝) . list0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y )) → list0 𝑝 𝐴0 𝐴Y

Ind eq
0
(𝑝 : P) (𝐴0 : [[□]]𝑝 ) (𝐴Y : {{□}}𝑝 𝐴0) (𝑥0 : [[𝐴]]𝑝 ) (𝑥Y : {{𝐴}}𝑝 𝑥0) : Π(𝑦0 : [[𝐴]]𝑝 ) (𝑦Y : {{𝐴}}𝑝 𝑦0) .□ :=

| refl0 : eq0 𝑝 𝐴0 𝐴Y 𝑥0 𝑥Y 𝑥0 𝑥Y

Ind BR (𝑝 : P) : (Π(𝑞 𝛼 : 𝑝).B0 𝑝) → ∗ :=
| trueR : BR 𝑝 (_(𝑞 𝛼 : 𝑝) . true0 𝑞)
| falseR : BR 𝑝 (_(𝑞 𝛼 : 𝑝) . false0 𝑞)
Ind listR (𝑝 : P) (𝐴0 : [[□]]𝑝 ) (𝐴Y : {{□}}𝑝 𝐴0) : (Π(𝑞 𝛼 : 𝑝). list0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y )) → ∗ :=
| nilR : listR 𝑝 𝐴0 𝐴Y (_(𝑞 𝛼 : 𝑝) . nil0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y ))
| consR : Π(𝑥0 : [[𝐴]]𝑝 ) (𝑥Y : {{𝐴}}𝑝 𝑥0).

Π(𝑙0 : Π(𝑞 𝛼 : 𝑝). list0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y )) (𝑙Y : Π(𝑞 𝛼 : 𝑝). listR 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y ) (𝛼 ◦ 𝑙0)) .
listR 𝑝 𝐴0 𝐴Y (_(𝑞 𝛼 : 𝑝) . cons0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y ) (𝛼 ◦𝑥0) (𝛼 ◦𝑥Y ) (𝛼 ◦ 𝑙0))

Ind eqR (𝑝 : P) (𝐴0 : [[□]]𝑝 ) (𝐴Y : {{□}}𝑝 𝐴0) (𝑥0 : [[𝐴]]𝑝 ) (𝑥Y : {{𝐴}}𝑝 𝑥0) :

Π(𝑦0 : [[𝐴]]𝑝 ) (𝑦Y : {{𝐴}}𝑝 𝑦0). (Π(𝑞 𝛼 : 𝑝). eq
0
𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y ) (𝛼 ◦𝑥0) (𝛼 ◦𝑥Y ) (𝛼 ◦𝑦0) (𝛼 ◦𝑦Y )) → ∗ :=

| reflR : eqR 𝑝 𝐴0 𝐴Y 𝑥0 𝑥Y 𝑥0 𝑥Y (_(𝑞 𝛼 : 𝑝) . refl0 𝑞 (𝛼 ◦𝐴0) (𝛼 ◦𝐴Y ) (𝛼 ◦𝑥0) (𝛼 ◦𝑥Y ))

Figure 2. Examples of the Prefascist Inductive Translation

[I]Γ𝑝 := _[[ΓI,ΔI]]𝑝 . Psh (_(𝑞 𝛼 : 𝑝).I0 𝑞 (𝛼 ◦ ΓI) (𝛼 ◦ΔI)) (IR 𝑝 ΓI ΔI) {I}Γ𝑝 := _[[ΓI,ΔI]]𝑝 . _(𝑞 𝛼 : 𝑝). refl
[𝑐𝑖 ]Γ𝑝 := 𝑐0𝑖 𝑝 {𝑐𝑖 }Γ𝑝 := 𝑐R𝑖 𝑝

Figure 3. Translation Extension

proof of the right type is convertible to the parametricity

proofs used in 𝑝t and 𝑝f. This definitional irrelevance

is also critical, had we not guillotined the higher coher-

ences, we would not have been able to conclude.

The same trick applies to any inductive type. Com-

pared to Jaber et al. [31], the additional parametricity

proof is, in essence, internalizing that any inhabitant of

an inductive type is strictly equal to its [-expansion and

thus that all predicates are linear. Therefore:

Theorem 3. The prefascist translation is a model of CIC.

6 Canonicity
Let us call𝔓𝔰𝔥P the type theory generated by the pre-

fascist translation over the category P. By virtue of the

soundness theorem,𝔓𝔰𝔥P contains CIC. We have a syn-

tactic model, so it is trivial to peek at the whereabouts

of canonicity.

Theorem 4. If P has a weak terminal element 1, then
𝔓𝔰𝔥P enjoys canonicity up to irrelevance.

Proof. Let us look at the case of booleans. A closed term

⊢𝔓𝔰𝔥P
𝑀 : B is given by a pair of terms𝑀0,𝑀Y of type

𝑝 : P ⊢𝔰CIC 𝑀0 : B0 𝑝
𝑝 : P ⊢𝔰CIC 𝑀Y : BR 𝑝 (_(𝑞 𝛼 : 𝑝) . 𝑀0{𝑝 := 𝑞})

By canonicity of 𝔰CIC, 𝑀Y {𝑝 := 1} ensures that ei-

ther (_(𝑞 𝛼 : 1) . 𝑀0{𝑝 := 𝑞}) ≡ (_(𝑞 𝛼 : 1). true0 𝑞) or
(_(𝑞 𝛼 : 1). 𝑀0{𝑝 := 𝑞}) ≡ (_(𝑞 𝛼 : 1). false0 𝑞). Either
way, by applying both sides to the weak terminal mor-

phism !𝑞 : hom 𝑞 1, we get canonicity of𝑀0.

While there is no proof in sight that𝑀Y is a constant

constructor, it does not matter because by canonicity of

𝑀0, it is necessarily convertible to such a constructor.

□

We insist that canonicity is relative to the target the-

ory, and that there is currently no proof that 𝔰CIC enjoys

canonicity, although it is believed so [2].

7 A Categorical Equivalence
It so happens that Set models strict propositions [23],

where they are interpreted by subsingletons. Observe

that, by taking Set as our target type theory, a base

category as in Definition 1 is a (small) category. We can

thus apply the prefascist translation and compare the

result to usual set-theoretic presheaves. We will ignore

size issues.
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First, we make explicit the unfolding the prefascist

translation on closed expressions.

Lemma 4. A type A in the prefascist translation is given
by, for any 𝑝 : P,

• a family of sets 𝐴𝑝 : Π(𝑞 𝛼 : 𝑝) . Set
• a predicate (−) ⊩𝑝 A ⊆ (Π(𝑞 𝛼 : 𝑝). 𝐴𝑝 𝑞 𝛼)

s.t. for all 𝑝, 𝑞, 𝛼 : hom 𝑞 𝑝 , we have 𝐴𝑞 𝑞 id𝑞 = 𝐴𝑝 𝑞 𝛼 .

The two components are the set-theoretical intepre-

tation of a universally quantified pre-presheaf, and the

equation is given by parametricity of the latter.

Definition 4. If A is a type and 𝑝 : P, we define El𝑝 A,
the set of partial elements of A at 𝑝 , as

{𝑥 : Π(𝑞 𝛼 : 𝑝). 𝐴𝑝 𝑞 𝛼 | ∀(𝑞 𝛼 : 𝑝). (𝛼 ◦ 𝑥) ⊩𝑞 A}.

Lemma 5. Given two typesA and B, a function 𝑓 of type
A → B is given by a P-indexed family of functions

𝑓𝑝 : El𝑝 A → 𝐵𝑝 𝑝 id𝑝

which preserves the realizability predicate, i.e.

∀𝑝 : P. ∀𝑥 : El𝑝 A. (_(𝑞 𝛼 : 𝑝). 𝑓𝑞 (𝛼 ◦ 𝑥)) ⊩𝑝 B.

Prefascist types and functions between them form a

category in a straightforward way, with the categorical

equations satisfied definitionally. A natural question to

ask is its relationship with the usual presheaf category.

We will describe a standard presheaf A as

• a P-indexed family of sets A𝑝 : Set
• restrictions \A

𝑝 : Π(𝑞 𝛼 : 𝑝).A𝑝 → A𝑞

satisfying the usual functoriality equations.

Definition 5. Let A be a presheaf. We define the pre-

fascist type𝔖(A) as
(𝔖(A))𝑝 := _(𝑞 𝛼 : 𝑝).A𝑞

𝑥 ⊩𝑝 𝔖(A) := ∀(𝑞 𝛼 : 𝑝). 𝑥 𝑞 𝛼 = \A
𝑝 𝑞 𝛼 (𝑥 𝑝 id𝑝 ).

Similarly, let A be a prefascist type. We define the pre-

sheaf L (A) as
(L (A))𝑝 := El𝑝 A
\

L (A)
𝑝 𝑞 𝛼 𝑥 := 𝛼 ◦𝑥 .

Theorem 5. 𝔖(−) and L (−) are functors and define
an equivalence of categories.

The proof can be carried in any model of 𝔰CIC addi-

tionally featuring function extensionality. This shows

that as long as one is willing to accept funext in the

metatheory, our new notion of presheaves is virtually

the same as the traditional one. But ours shines by the

fact that it makes all conversions purely definitional

without relying on any extensionality axiom.

8 Russian Constructivism
Russian constructivism is a splinter group from orthodox

intuitionism. Its defining feature [8], that puts it apart

both from Bishop’s minimal intuitionism and Brouwer’s

radical constructivism
4
, is that they decree Markov’s

principle (MP), usually stated as

Π(𝑓 : N→ B).
¬¬(Σ𝑛 : N. 𝑓 𝑛 = true) → Σ𝑛 : N. 𝑓 𝑛 = true.

It is equivalent to saying that a Turingmachine that does

not loop necessarily terminates. While not provable in

intuitionistic logic [44], Markov’s principle has been

long known to be somewhat compatible with it, insofar

as it does not break the witness property. Moreover,

MP turns out to be necessary for many completeness

results [25, 36].

There are various justifications ofMP in the literature,

with varying degrees of convincing strength. We review

the most representative ones in the remainder of this

section.

The oldest one is probably Kleene realizability [34],

where MP is realized via an unbounded loop . The re-

alizer does not use at all the doubly-negated premise,

and its validity critically relies in MP being provable in

the meta-theory. As such, it is arguably cheating. The
requirement of arbitrary fixpoints in the language of

realizers is also an issue, as in general it entails undecid-

ability of the realizability relation.

Dialectica [6] also inteprets MP, in a more intricate

way. Contrarily to Kleene realizability, the Dialectica

realizer of a negation contains exploitable data [35].MP
is realized by extracting the integer witness from its

double-negated premise, allowing to be at the same time

more efficient than a clueless loop, and less demanding

logically as this does not require meta-MP.
Coquand and Hofmann [15] gave a syntactic model

of PRA𝜔 +MP into PRA𝜔
itself, which was allegedly a

variant of Kripke semantics enriched with an additional

layer looking like Friedman’s 𝐴-translation [20].

More recently, Herbelin [25] and Ili
´
k [29] described

how to implementMP using a weak form of delimited

continuations. Their realizer creates a fresh, statically-

bound exception and uses it to feed the doubly-negated

premise with a failing term. The exception carries an

integer as an argument, which is the witness of the

existential being proved. The realizer thus catches the

exception ensuring it does not escape, and returns its

carried value. This is valid because the double negation

4
Members of the Markovian school also insist that all proofs should

correspond to a realizer. In first-order logic this often leads to the

acceptance of some form of Church’s thesis [38]. We argue that ac-

cording to a lax interpretation of this requirement, dependent types

fulfill it by construction, since in CIC proofs are literally programs.
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is applied to a hereditarily positive type, which guar-

antees that the fresh exception cannot be involuntarily

caught in a closure and escape its handler.

So far, all known models of a dependent type the-

ory extended with MP relied on classical logic at the

meta-level, and in particular broke decidability of type-

checking and computational canonicity. As a matter

of fact, there were two distinct countermodels to the

derivability of MP in CIC [17, 40].

In the remainder of this paper, we give a generaliza-

tion of the Coquand-Hofmann model to CIC, and make

the proofmore synthetic. The resultingmodel is the com-

position of two simpler model transformations, namely

an instance of the prefascist interpretation described

above, followed by an exceptional interpretation [40].

We will call the resulting system CCCP, the Calculus of
Constructions with Completeness Principles, which will

be an extension of CIC validatingMP and enjoying by

construction canonicity and the like. The whole process

can be pictorially summarized as

CCCP Exn // CIC + E Psh // 𝔰CIC

where E is an exotic type introduced by the presheaf

intepretation together with a few combinators, and the

exceptional translation is performed with E as the type

of exceptions.

9 Exception is the Rule
We briefly summarize the exceptional model [40] in this

section. We will not dwell too much on the details for

lack of space, instead we invite the reader to refer to the

cited paper for a more in-depth exposition.

Intuitively, given a type theory T containing CIC,
together with a type ⊢T E : □ that will stand for the

type of exceptions, the exceptional translation builds a

new type theory TE where failure is allowed, under the
form of terms

⊢TE E : □
⊢TE raise : Π𝐴 : □. E → 𝐴

where E reflects E, and subject to equations such as

raise (Π𝑥 : 𝐴. 𝐵) 𝑒 ≡ _𝑥 : 𝐴. raise 𝐵 𝑒

match (raise I 𝑒) return 𝑃 with ®𝑝 ≡ raise 𝑃 𝑒 .

Said otherwise, we have a primitive that allows to es-

cape from the surrounding context, i.e. exceptions. They

obey a call-by-name equational theory, so they are quite

distinct from their realworld counterparts. In particular,

it is not possible to catch exceptions at an arbitrary type.

They can only be caught over inductive types, in which

case the catch primitive is a generalization of the usual

dependent eliminator. For instance, exception-catching

on booleans is given by the primitive

⊢TE catchB : Π𝑃 : B→ □.

𝑃 true → 𝑃 false → (Π𝑒 : E. 𝑃 (raise B 𝑒)) →
Π𝑏 : B. 𝑃 𝑏

which enjoys the obvious reduction rules. Alternatively,

this can be presented as a pattern-matching extension

where branches may optionally handle an exception.

In what follows we fix a theory T containing CIC,
a type ⊢T E : □0 and an arbitrary family of terms of

type ⊢T Ω𝑖 : E→ □□𝑖 , where □□𝑖 := Σ𝐴 : □𝑖 . (E→ 𝐴)5.
This family of terms is used to fix the meaning of judg-

ments of the shape ⊢TE 𝑀 : raise □ 𝑁 . Note that the

type of Ω𝑖 is always inhabited, hence such a term can

always be constructed regardless of the actual value of

E. Once again, TE is given by a syntactic translation

into T . The basic idea is that we enrich types through

the interpretation with their own raise function. In

particular,

⊢TE 𝐴 : □ ↦→ ⊢T [𝐴] : □□
⊢TE 𝑀 : 𝐴 ↦→ ⊢T [𝑀] : [𝐴] .𝜋1.

Translation of the negative fragment is formally given

at Figure 4.

Inductive types can be added straightforwardly, we

sketch their translation here. Given an inductive type

I, we set [I] := (IE,I∅) where IE is an inductive type

in T whose constructors have as type the pointwise

translation of those of I, plus one additional construc-
tor I∅ : E→ IE. Constructors in the source theory are

then interpreted by their counterpart from the extended

inductive in the target theory. This interpretation is read-

ily adapted to parameters and indices. As an example,

we show the translation on lists below.

Inductive listE (𝐴 : □□) : □ :=

| nilE : listE 𝐴
| consE : 𝐴.𝜋1 → listE 𝐴 → listE 𝐴
| list∅ : E→ listE 𝐴

This fully defines the introduction rules for inductive

types. As usual, the subtle part lies in the interpreta-

tion of dependent elimination. Essentially, we interpret

pattern-matching pointwise. This almost works thanks

to the preservation of typing, except for the additional

constructor which is not accounted for. For this one con-

structor, we use instead the raising primitive given by

the return type of the pattern-matching, which corre-

sponds computationally with reraising the exception in

the error case.

Theorem 6. TE is a model of CIC.

5
We will reuse in this section the same kind of notations as for the

forcing translation, because all these syntactic models follow the same

pattern. They should not be confused though.



Russian Constructivism in a Prefascist Theory LICS ’20, July 8–11, 2020, Saarbrücken, Germany

[□𝑖 ] := (□□𝑖 ,Ω𝑖 )

[𝑥] := 𝑥

[_𝑥 : 𝐴.𝑀] := _𝑥 : [[𝐴]] . [𝑀]

[𝑀 𝑁 ] := [𝑀] [𝑁 ]

[Π𝑥 : 𝐴. 𝐵] := (Π𝑥 : [[𝐴]] . [[𝐵]], (_(𝑒 : E) (𝑥 : [[𝐴]]). [𝐵]∅ 𝑒))

[E] := (E, (_𝑒 : E. 𝑒))

□□𝑖 := Σ𝐴 : □𝑖 . (E→ 𝐴)

[[𝐴]] := [𝐴] .𝜋1
[𝐴]∅ := [𝐴] .𝜋2
[[·]] := ·

[[Γ, 𝑥 : 𝐴]] := [[Γ]], 𝑥 : [[𝐴]]

Figure 4. Exceptional Translation

We do not further detail the implementation of the

aforementioned exceptional combinators, although it

is quite direct. Instead, we turn to the metatheoretical

properties of the translation. To clarify the vocabulary,

we say that a type 𝐴 is inhabited in a theory T when

there is a closed term ⊢T 𝑀 : 𝐴.

It is immediate to make the following observation.

Lemma 6. TE is consistent iff E is not inhabited in T .

Proof. We have ⊥E � E in T . □

It is more generally possible to show a weak form of

canonicity for TE, which is obtained directly from the

constructor-adding interpretation of inductive types.

Lemma 7. Assuming T enjoys canonicity, if I is an
inductive type in TE with constructors ®𝑐 and ⊢TE 𝑀 : I,
then either 𝑀 ≡ 𝑐𝑖 ®𝑁 for some 𝑖 or 𝑀 ≡ raise I 𝑒 for
some ⊢TE 𝑒 : E.

Note that a direct consequence of this property is

that if E is not inhabited in T , then TE does enjoy usual

canonicity.

Interestingly, this model can already be used to show

a very weak form of MP. Rather than the full fledged

internal principle, it is possible to show the admissibility

of Markov’s rule in CIC. This derivation rule is defined

as

⊢CIC 𝑀 : ¬¬𝑃
⊢CIC ⟨𝑀⟩ : 𝑃

where 𝑃 is some hereditarily positive type, e.g. 𝑃 :=

Σ𝑛 : N. 𝑓 𝑛 = true. Note that this rule crucially requires
the proof environment to be empty, thus forbidding to

derive MP.

Lemma 8 (Friedman’s trick). Markov’s rule is admissi-
ble in CIC.

Proof. The proof goes as follows. Let ⊢CIC 𝑀 : ¬¬𝑃 . By
soundness of the exceptional model, for any parame-

ter E we get a proof ⊢CIC [𝑀] : [[¬¬𝑃]]. Unfolding the

definitions, we get in CIC an isomorphism [[¬¬𝑃]] �
( [[𝑃]] → E) → E. Now, the crux of the proof lies in the

observation that if 𝑃 is hereditarily positive, then there

is actually a closed CIC term \𝑃 : [[𝑃]] → 𝑃 + E. Such a

term is called a storage operator [37], and is defined by

recursively matching over its argument and reconstruct-

ing a purified proof, and propagating the exception in

case of error. The ability to do so is fundamentally tied

to the positivity of 𝑃 , which allows to locally force ex-

ceptions on its inhabitants, and intuitively corresponds

to enforcing a delimited form of call-by-value.

We now have all the required ingredients. Let us set

E := 𝑃 , in which case [𝑀] provides us with a term

( [[𝑃]] → 𝑃) → 𝑃 , and the storage operator has type

\𝑃 : [[𝑃]] → 𝑃 + 𝑃 . By plugging both together with get a

closed proof of 𝑃 inCIC, hence concluding the proof. □

10 From the Rule to the Principle
We argue that implementing Markov’s rule is almost
sufficient to get the full Markov’s principle. Obviously,

it is not enough per se. We can actually show that TE
disprovesMPwhen E is inhabited [40], which is the case
for the instance used in the extraction of Markov’s rule.

Yet, the key point is that this rule already features the

necessary basic computational extension to implement

MP with a little bit of tweaking. The rationale is the

following. Any finite number of closed uses of Markov’s

rule can be eliminated via the above trick.What prevents

us from generalizing toMP is the requirement to pick

E beforehand, as it will be fixed once and for all inside

the exceptional translation.

What if we were able to dynamically change the value

of E to track the set of Markov’s rules being applied?

Definition 6 (Dynamic prompt). We now assume that

the target theory of the exceptional translation is an

extension of CIC dubbed CIC + E which contains the

data described at Figure 5. We furthermore assume that

E is not inhabited.

This extension is intuitively defined in a theory where

there is an ambient global cell p of type N→ B, which
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E : □0

local : (N→ B) → □𝑖 → □𝑖

return : Π(𝐴 : □) (𝜑 : N→ B). 𝐴 → local 𝜑 𝐴

of→ : Π(𝐴𝐵 : □) (𝜑 : N→ B). local 𝜑 (𝐴 → 𝐵) → local 𝜑 𝐴 → local 𝜑 𝐵

to→ : Π(𝐴𝐵 : □) (𝜑 : N→ B). (local 𝜑 𝐴 → local 𝜑 𝐵) → local 𝜑 (𝐴 → 𝐵)
ofΣ : Π(𝑃 : N→ □) (𝜑 : N→ B). local 𝜑 (Σ𝑛 : N. 𝑃 𝑛) → Σ𝑛 : N. local 𝜑 (𝑃 𝑛)
toΣ : Π(𝑃 : N→ □) (𝜑 : N→ B) . (Σ𝑛 : N. local 𝜑 (𝑃 𝑛)) → local 𝜑 (Σ𝑛 : N. 𝑃 𝑛)
of= : Π(𝑀 𝑁 : N) (𝜑 : N→ B). local 𝜑 (𝑀 = 𝑁 ) → 𝑀 = 𝑁

to= : Π(𝑀 𝑁 : N) (𝜑 : N→ B). 𝑀 = 𝑁 → local 𝜑 (𝑀 = 𝑁 )
ofE : Π(𝜑 : N→ B). local 𝜑 E → (Σ𝑛 : N. 𝜑 𝑛 = true) + E
toE : Π(𝜑 : N→ B). ((Σ𝑛 : N. 𝜑 𝑛 = true) + E) → local 𝜑 E

Figure 5. Dynamic Prompt API

can be locally mutated. Only types are allowed to re-

ally observe this cell, otherwise this would break the

behaviour of the pure CIC fragment. A typical example

is given by the local modality, which allows evaluat-

ing its type argument inside a cell set to the pointwise

boolean or between the current cell value and the func-

tion argument. Likewise, E is inhabited if there is some

𝑛 : N s.t. p 𝑛 = true. Its commutation principles with

local reflect this semantics. Finally, return is the unit

of the modality, and captures the monotonocity of the

pure fragment.

Let CCCP be the theory obtained by unrolling the

model construction of the previous section by setting

T := CIC + E and E := E. We immediately get the

following results.

Lemma 9. We have the following.

• CCCP contains CIC.
• If CIC + E is consistent then so is CCCP.
• If CIC + E enjoys canonicity then so does CCCP.

Proof. The first property follows from soundness, and

the two last ones from the uninhabitedness of E. □

Note that we are walking a tight rope here. Consis-

tency of CCCP only requires the absence of a term𝑀 s.t.

⊢CIC+E 𝑀 : E, which is a much weaker property than in-

ternally having a term 𝑁 such that ⊢CIC+E 𝑁 : ¬E. The
latter would have been enough to show the degeneracy

of the construction, i.e. every type would be isomorphic

to its exceptional translation.

Thanks to our fancily uninhabited type of exceptions,

we actually get a non-trivial extension of CIC.

Theorem 7. CCCP validates Russian constructivism.

Proof. The proof is actually quite easy. MP is translated

by the exceptional translation in CIC + E as

Π(𝜑 : NE → BE).
(((ΣE (𝑛 : NE). 𝜑 𝑛 =E trueE) → ⊥E) → ⊥E) →
ΣE (𝑛 : NE). 𝜑 𝑛 =E trueE .

Recall that in CIC + E,
⊥E � E
𝑀 =E 𝑁 � (𝑀 = 𝑁 ) + E
ΣE (𝑥 : 𝐴). 𝐵 � (Σ𝑥 : 𝐴. 𝐵) + E

By intuitionistic symbol pushing, it is thus logically

equivalent to prove the simpler statement

Π(𝜑 : NE → BE).
(((Σ𝑛 : NE . 𝜑 𝑛 = trueE) → E) → E) →
(Σ𝑛 : NE . 𝜑 𝑛 = trueE) + E.

The first part of the proof is to get rid of the ex-

ceptional encoding on 𝜑 . Let us assume for now some

𝜑 : NE → BE . Let ⇑N : N→ NE be the injective func-

tion that recursively maps every pure constructor to

its exceptional counterpart. Remark now we can easily

build a function 𝜑 : N→ B by pattern-matching as

𝜑 𝑛 := true if 𝜑 (⇑N 𝑛) ≡ trueE
𝜑 𝑛 := false if 𝜑 (⇑N 𝑛) ≡ falseE
𝜑 𝑛 := false if 𝜑 (⇑N 𝑛) ≡ B∅ 𝑒 .

Moreover, we have both

(Σ𝑛 : NE . 𝜑 𝑛 = trueE) → (Σ𝑛 : N. 𝜑 𝑛 = true) + E
(Σ𝑛 : N. 𝜑 𝑛 = true) → (Σ𝑛 : NE . 𝜑 𝑛 = trueE)

the first one being proved by recursively forcing the

integer witness, and the second by trivial injection. By

combining these results together, [[MP]] is reducible to

Π(𝜑 : N→ B).
(((Σ𝑛 : N. 𝜑 𝑛 = true) → E) → E) →
(Σ𝑛 : N. 𝜑 𝑛 = true) + E.

So far we have not used the additional structure on

E and have only reasoned intuitionistically. The second

part of the proof is precisely about the use of dynamic

prompt to show the above statement.
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Let us assume now some 𝜑 : N→ B and a proof

𝑒 : ((Σ𝑛 : N. 𝜑 𝑛 = true) → E) → E, we need to show

(Σ𝑛 : N. 𝜑 𝑛 = true) + E. By applying return to 𝑒 we

get a proof of

local 𝜑 (((Σ𝑛 : N. 𝜑 𝑛 = true) → E) → E).

Now, by applying the various distribution lemmas from

Figure 5, we get a proof of

((Σ𝑛 : N. 𝜑 𝑛 = true) → local 𝜑 E) → local 𝜑 E.

But remember that

local 𝜑 E ↔ (Σ𝑛 : N. 𝜑 𝑛 = true) + E

so by writing

E ′
:= local 𝜑 E

𝑃 := Σ𝑛 : N. 𝜑 𝑛 = true

we only have to prove

(E ′ ↔ 𝑃 + E) → ((𝑃 → E ′) → E ′) → 𝑃 + E ′

which is an intuitionistic tautology, regardless of E, E ′

and 𝑃 .

□

11 The Prompt Dialectics
In this section, we justify CIC+E via a specific instance

of the prefascist construction. In contrast with the pre-

vious section, CIC + E will now be the source theory,
while the target will be 𝔰CIC. Similarly, any syntactic

translation will refer to the prefascist model, not the
exceptional one.

As a minimal departure on the definition from Sec-

tion 4, wewill use a strict preorder rather than a category.

That is, hom will live in ∗0 rather than □0, and we will

evocatively write 𝑝 ≤ 𝑞 rather than hom 𝑝 𝑞. We stress

out that this does not affect neither the translation nor

the soundness theorems in any way.

Without much surprise, the preorder we will consider

is the one from Coquand-Hofmann [15].

Definition 7. We define in 𝔰CIC the preorder F as

• F := N→ B.
• 𝑝 ≤ 𝑞 := Π𝑛 : N. 𝑞 𝑛 = true → 𝑝 𝑛 = true.

Going down in the preorder means becoming truer.

This preorder has a meet semi-lattice structure, which

we will put at good use, with

• ⊤ := _𝑛 : N. false
• 𝑝 ∧ 𝑞 := _𝑛 : N. or (𝑝 𝑛) (𝑞 𝑛).

We will write CIC + E := 𝔓𝔰𝔥F. By Theorem 3, it is

clear that CIC + E contains CIC. Remark that by Theo-

rem 4 the existence of the maximal element ⊤ ensures

that𝔓𝔰𝔥F enjoys canonicity, and thus the premises of

Lemma 9 hold.

Let us now implement in the extensions from Figure 5

inside𝔓𝔰𝔥F in Figure 6. We focus on the computational

parts in the paper, the commutation lemmas are proved

by mere symbol pushing. We need a bit of boilerplate,

made explicit below.

Because we work in a strict preorder, for simplicity

we will not explicitly write the corresponding proofs,

and write 𝑝 ⊳ 𝑞 for some proof of type 𝑝 ≤ 𝑞 derivable

from the current context. We write True for the one-

constructor ∗ inductive type.
By induction it is easy to define a pair of lift functions

⇑N0

: N→ [[N]]𝑝 and ⇑NY : Π(𝑛 : N). {{N}}𝑝 (⇑N0

𝑛) that
map source constructors to their prefascist counterparts.

From it, we can derive a function

𝜒 : (Π(𝑛0 : [[N]]𝑝 ) (𝑛Y : {{N}}𝑝 𝑛0).B0 𝑝) → N→ B
that we use to cast prefascist functions [[N→ B]]𝑝 to

𝔰CIC functions N→ B.
There is a bit of noise, but the implementation cor-

responds literally to the intuitive description from the

previous section. We have to freeify the presentation

of local by adding a spurious quantification, although

this is just a technical detail.

Lemma 10. The E type is not inhabited.

Proof. This would require that for any 𝑝 : F,

[E]𝑝 .T 𝑝 id𝑝 ≡ (Σ𝑛 : N. 𝑝 𝑛 = true)

is inhabited in 𝔰CIC. But it is obvious that this type is
provably empty for 𝑝 := ⊤, and thus uninhabited by

consistency of 𝔰CIC.
□

Note that such an exotic type is typical of presheaf

models, as its contents depends on the modal value of

the global state.

Theorem 8. The prompt API is realized in𝔓𝔰𝔥F.

By gathering the results from the previous sections,

we readily get the following.

Theorem 9. There is a syntactic model of CIC + MP
enjoying normalization, canonicity and decidability of
type-checking, as long as 𝔰CIC also enjoys those proper-
ties.

12 Related Work
The usefulness of strict propositions in the construction

of syntactic models was first observed by Altenkirch [4]

more than twenty years ago, although this particular

instance did not rely on UIP. We find it hard to believe

that it took so long for this feature to make it into main-

stream proof assistants. It is undeniable that the HoTT
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[E]Γ𝑝 := Psh (_(𝑞 𝛼 : 𝑝). Σ𝑛 : N. 𝑞 𝑛 = true) (__. True)
{E}Γ𝑝 := _(𝑞 𝛼 : 𝑝). refl
[local 𝜑 𝐴]Γ𝑝 := Psh (_(𝑞 𝛼 : 𝑝). (𝑞 ∧ 𝜒 [𝜑]Γ𝑞 ⊳ 𝑝) •Γ [[𝐴]]Γ𝑞 ∧ 𝜒 [𝜑 ]Γ𝑞

)
(_(𝑥0 : Π(𝑞 𝛼 : 𝑝). (𝑞 ∧ 𝜒 [𝜑]Γ𝑞 ⊳ 𝑝) •Γ [[𝐴]]Γ𝑞 ∧ 𝜒 [𝜑 ]Γ𝑞

). (𝑝 ∧ 𝜒 [𝜑]Γ𝑝 ⊳ 𝑝) •Γ {{𝐴}}Γ𝑝 ∧ 𝜒 [𝜑 ]Γ𝑝
𝑥0)

{local 𝜑 𝐴}Γ𝑝 := _(𝑞 𝛼 : 𝑝). refl
[return 𝐴 𝜑 𝑀]Γ𝑝 := _(𝑞 𝛼 : 𝑝 ∧ 𝜒 [𝜑]Γ𝑝 ). (𝑞 ⊳ 𝑝) •Γ [𝑀]Γ𝑞
{return 𝐴 𝜑 𝑀}Γ𝑝 := _(𝑞 𝛼 : 𝑝 ∧ 𝜒 [𝜑]Γ𝑝 ). (𝑞 ⊳ 𝑝) •Γ {𝑀}Γ𝑞

Figure 6. Dynamic Prompt Implementation

trend triggered a revival of the activity around equality

that had gone into dormancy at the beginning of the

twenty-first century.

When unfolding the composition of the exceptional

and prefascist models proving MP, the resulting syn-

tactic translation is, up to implementation details, a

dependently-typed variant of the one given by Coquand-

Hofmann [15] for PRA𝜔
. This is not surprising, as they

describe their model as a mix between the Friedman’s

𝐴-translation [20] and Krikpe semantics [19]. The for-

mer is an ad-hoc first-order variant of the exceptional

model, while the latter is a non-dependent variant of

the presheaf model. The main contribution of our pa-

per is thus the extension of Coquand-Hofmann’s model

to CIC, together with its two-stage decomposition that

makes it easier to grasp.

We will argue that Herbelin’s implementation of MP
using a weak form of delimited continuations [25] is,

from the computational point of view, essentially the

same as the Coquand-Hofmann model. Herbelin’s sys-

tem features statically bound exceptions, that can be

introduced through a try − with clause and used as a

static jump. In Ili
´
k’s presentation [29], this system can

be typed with an ordered stack of prompts, where fail-

ure is allowed to return at any point in this stack. Thus,

the intended meaning of a term of type 𝐴 in a stack Σ
is a sum 𝐴 + Σ where the right case corresponds to an

exception. Furthermore, given a stack Ξ extending Σ, it
is always possible to lower a value 𝐴 in Σ to a value 𝐴

in Ξ, mimicking the presheaf monotonocity. The ability

to create a new prompt to proveMP is thus tantamount

to the action of moving along the order in the Kripke

construction. Said otherwise, the prompt stack indexing

follows a presheaf discipline.

This is even more obvious in Herbelin-Ghilezan pre-

sentation of call-by-name delimited continuations [26],

where types that would correspond to a call-by-push-

value thunk are indexed by the prompt stack. The CPS

they give makes it explicit that a type 𝐴Σ can be low-

ered to 𝐴Ξ by weakening, provided Ξ extends Σ. This

suggests a strong relationship between typed delimited

continuations and presheaves.

An extremely similar phenomenon occurs in norma-

lization-by-evaluation (NbE) proofs for _-calculi featur-

ing positive types [1, 3, 14, 18, 30, 33, 43]. While proving

NbE of the negative fragment can be performed in the

syntactic model of presheaves over contexts, there is

a fundamental problem as soon as one considers posi-

tive types, which require an involved modification of

the model, typically in two different ways. The first

one [18, 30] is to add MP to the meta-language, either

in direct style or by precompositon with a CPS. The

second one consists in extending the interpretation of

positive types to include neutral terms in the ambient

context [1, 14]. With enough squinting, it becomes ap-

parent that those neutral terms behave like statically

bound exceptions, an observation already made by Bar-

ral [7]. They are made available each time the context

is extended with a bound variable, and raised when a

term has not enough information to reduce to a nor-

mal form. In particular, at toplevel there are no neutral

terms because the context is empty, which implies that

the model is consistent. This bears a clear kinship with

our model of MP.
Let us also mention that our prompt mechanism is

reminiscent of a technique recently used by Rahli and

Bickford [42] to implement Brouwer’s continuity prin-

ciple based on the generation of fresh exceptions. Their

work suggests new uses for our exceptional presheaf

model.
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